28 research outputs found

    Strategic lesions in the anterior thalamic radiation and apathy in early Alzheimer's disease

    Get PDF
    BACKGROUND Behavioural disorders and psychological symptoms of Dementia (BPSD) are commonly observed in Alzheimer's disease (AD), and strongly contribute to increasing patients' disability. Using voxel-lesion-symptom mapping (VLSM), we investigated the impact of white matter lesions (WMLs) on the severity of BPSD in patients with amnestic mild cognitive impairment (a-MCI). METHODS Thirty-one a-MCI patients (with a conversion rate to AD of 32% at 2 year follow-up) and 26 healthy controls underwent magnetic resonance imaging (MRI) examination at 3T, including T2-weighted and fluid-attenuated-inversion-recovery images, and T1-weighted volumes. In the patient group, BPSD was assessed using the Neuropsychiatric Inventory-12. After quantitative definition of WMLs, their distribution was investigated, without an a priori anatomical hypothesis, against patients' behavioural symptoms. Unbiased regional grey matter volumetrics was also used to assess the contribution of grey matter atrophy to BPSD. RESULTS Apathy, irritability, depression/dysphoria, anxiety and agitation were shown to be the most common symptoms in the patient sample. Despite a more widespread anatomical distribution, a-MCI patients did not differ from controls in WML volumes. VLSM revealed a strict association between the presence of lesions in the anterior thalamic radiations (ATRs) and the severity of apathy. Regional grey matter atrophy did not account for any BPSD. CONCLUSIONS This study indicates that damage to the ATRs is strategic for the occurrence of apathy in patients with a-MCI. Disconnection between the prefrontal cortex and the mediodorsal and anterior thalamic nuclei might represent the pathophysiological substrate for apathy, which is one of the most common psychopathological symptoms observed in dementia

    Brain connectomics' modification to clarify motor and nonmotor features of myotonic dystrophy type 1

    Get PDF
    The adult form of myotonic dystrophy type 1 (DM1) presents with paradoxical inconsistencies between severity of brain damage, relative preservation of cognition, and failure in everyday life. This study, based on the assessment of brain connectivity and mechanisms of plasticity, aimed at reconciling these conflicting issues. Resting-state functional MRI and graph theoretical methods of analysis were used to assess brain topological features in a large cohort of patients with DM1. Patients, compared to controls, revealed reduced connectivity in a large frontoparietal network that correlated with their isolated impairment in visuospatial reasoning. Despite a global preservation of the topological properties, peculiar patterns of frontal disconnection and increased parietal-cerebellar connectivity were also identified in patients' brains. The balance between loss of connectivity and compensatory mechanisms in different brain networks might explain the paradoxical mismatch between structural brain damage and minimal cognitive deficits observed in these patients. This study provides a comprehensive assessment of brain abnormalities that fit well with both motor and nonmotor clinical features experienced by patients in their everyday life. The current findings suggest that measures of functional connectivity may offer the possibility of characterizing individual patients with the potential to become a clinical tool

    Relating diffusion tensor imaging measurements to microstructural quantities in the cerebral cortex in multiple sclerosis

    Get PDF
    To investigate whether the observed anisotropic diffusion in cerebral cortex may reflect its columnar cytoarchitecture and myeloarchitecture, as a potential biomarker for disease‐related changes, we compared postmortem diffusion magnetic resonance imaging scans of nine multiple sclerosis brains with histology measures from the same regions. Histology measurements assessed the cortical minicolumnar structure based on cell bodies and associated axon bundles in dorsolateral prefrontal cortex (Area 9), Heschl's gyrus (Area 41), and primary visual cortex (V1). Diffusivity measures included mean diffusivity, fractional anisotropy of the cortex, and three specific measures that may relate to the radial minicolumn structure: the angle of the principal diffusion direction in the cortex, the component that was perpendicular to the radial direction, and the component that was parallel to the radial direction. The cellular minicolumn microcircuit features were correlated with diffusion angle in Areas 9 and 41, and the axon bundle features were correlated with angle in Area 9 and to the parallel component in V1 cortex. This may reflect the effect of minicolumn microcircuit organisation on diffusion in the cortex, due to the number of coherently arranged membranes and myelinated structures. Several of the cortical diffusion measures showed group differences between MS brains and control brains. Differences between brain regions were also found in histology and diffusivity measurements consistent with established regional variation in cytoarchitecture and myeloarchitecture. Therefore, these novel measures may provide a surrogate of cortical organisation as a potential biomarker, which is particularly relevant for detecting regional changes in neurological disorders

    Brain connectivity changes in autosomal recessive Parkinson Disease: a model for the sporadic form

    Get PDF
    Biallelic genetic mutations in the Park2 and PINK1 genes are frequent causes of autosomal recessive PD. Carriers of single heterozygous mutations may manifest subtle signs of disease, thus providing a unique model of preclinical PD. One emerging hypothesis suggests that non-motor symptom of PD, such as cognitive impairment may be due to a distributed functional disruption of various neuronal circuits. Using resting-state functional MRI (RS-fMRI), we tested the hypothesis that abnormal connectivity within and between brain networks may account for the patients' cognitive status. Eight homozygous and 12 heterozygous carriers of either PINK1 or Park2 mutation and 22 healthy controls underwent RS-fMRI and cognitive assessment. RS-fMRI data underwent independent component analysis to identify five networks of interest: default-mode network, salience network, executive network, right and left fronto-parietal networks. Functional connectivity within and between each network was assessed and compared between groups. All mutation carriers were cognitively impaired, with the homozygous group reporting a more prominent impairment in visuo-spatial working memory. Changes in functional connectivity were evident within all networks between homozygous carriers and controls. Also heterozygotes reported areas of reduced connectivity when compared to controls within two networks. Additionally, increased inter-network connectivity was observed in both groups of mutation carriers, which correlated with their spatial working memory performance, and could thus be interpreted as compensatory. We conclude that both homozygous and heterozygous carriers exhibit pathophysiological changes unveiled by RS-fMRI, which can account for the presence/severity of cognitive symptom

    Different patterns of correlation between grey and white matter integrity account for behavioral and psychological symptoms in Alzheimer's disease

    No full text
    Behavioral disorders and psychological symptoms (BPSD) in Alzheimer's disease (AD) are known to correlate with grey matter (GM) atrophy and, as shown recently, also with white matter (WM) damage. WM damage and its relationship with GM atrophy are reported in AD, reinforcing the interpretation of the AD pathology in light of a disconnection syndrome. It remains uncertain whether this disconnection might account also for different BPSD observable in AD. Here, we tested the hypothesis of different patterns of association between WM damage of the corpus callosum (CC) and GM atrophy in AD patients exhibiting one of the following BPSD clusters: Mood (i.e., anxiety and depression; ADmood), Frontal (i.e., dishinibition and elation; ADfrontal), and Psychotic (delusions and hallucinations; ADpsychotic) related symptoms, as well as AD patients without BPSD. Overall, this study brings to light the strict relationship between WM alterations in different parts of the CC and GM atrophy in AD patients exhibiting BPSD, supporting the hypothesis that such symptoms are likely to be caused by characteristic patterns of neurodegeneration of WM and GM, rather than being a reactive response to accumulation of cognitive disabilities, and should therefore be regarded as potential markers of diagnostic and prognostic value in AD

    Different patterns of correlation between grey and white matter integrity account for behavioral and psychological symptoms in Alzheimer's disease.

    No full text
    Behavioral disorders and psychological symptoms (BPSD) in Alzheimer's disease (AD) are known to correlate with grey matter (GM) atrophy and, as shown recently, also with white matter (WM) damage. WM damage and its relationship with GM atrophy are reported in AD, reinforcing the interpretation of the AD pathology in light of a disconnection syndrome. It remains uncertain whether this disconnection might account also for different BPSD observable in AD. Here, we tested the hypothesis of different patterns of association between WM damage of the corpus callosum (CC) and GM atrophy in AD patients exhibiting one of the following BPSD clusters: Mood (i.e., anxiety and depression; ADmood), Frontal (i.e., dishinibition and elation; ADfrontal), and Psychotic (delusions and hallucinations; ADpsychotic) related symptoms, as well as AD patients without BPSD. Overall, this study brings to light the strict relationship between WM alterations in different parts of the CC and GM atrophy in AD patients exhibiting BPSD, supporting the hypothesis that such symptoms are likely to be caused by characteristic patterns of neurodegeneration of WM and GM, rather than being a reactive response to accumulation of cognitive disabilities, and should therefore be regarded as potential markers of diagnostic and prognostic value in AD

    Mild cognitive impairment: same identity for different entities

    No full text
    This study investigates whether different patterns of grey matter (GM) loss may account for the different neuropsychological profiles observed in patients with amnestic (a-) and non-amnestic (na-) mild cognitive impairment (MCI), and may predict patients' clinical evolution. Fifty-five consecutive individuals complaining of cognitive dysfunction (referred to specialist dementia clinics) were screened and included in the study if they met the diagnostic criteria for MCI on a neurodegenerative basis. After an extensive neuropsychological assessment, patients were classified as suffering from a-MCI or na-MCI. Twenty-eight healthy individuals were also recruited and served as controls. All participants underwent magnetic resonance imaging at 3T, including conventional images and volumetric scans. Volumetric data were processed using voxel-based morphometry to assess between-group differences in regional GM volumes and correlations with neuropsychological performances. When compared to controls, a-MCI patients showed prominent GM volume reductions in the medial temporal lobes, while those with na-MCI showed reduced GM volumes in the orbito-frontal cortex and basal ganglia. In a-MCI patients, significant associations were found between verbal long-term memory performance and GM volumes in the hippocampus. Conversely, in na-MCI patients, associations were found between scores at tests exploring executive functions and GM volumes in the orbito-frontal cortex. At one-year follow-up, conversions were recorded exclusively toward Alzheimer's disease (AD) in the a-MCI group, and toward non-AD dementia in the na-MCI group. This study confirms that MCI is a heterogeneous clinical identity including different neurodegenerative entities; specific patterns of regional GM loss appear to account for specific neuropsychological features and are likely to predict patients' clinical evolution

    Cognitive reserve and the risk for Alzheimer's disease: a longitudinal study

    No full text
    This study investigates how cognitive reserve (CR) interacts with neurodegeneration (quantified by medial temporal atrophy, MTA) and macroscopic white matter lesions (WMLs) in delaying the conversion from amnestic mild cognitive impairment to Alzheimer's disease (AD). Forty-two amnestic mild cognitive impairment patients were consecutively recruited. They underwent magnetic resonance imaging and a comprehensive questionnaire to classify them as individuals with low or high CR. Patients were then clinically followed-up for 2 years. The patients' risk for conversion to AD because of CR was estimated by controlling for cognitive efficiency, MTA, and WMLs at baseline. Global cognition was the best predictor of conversion to AD in low CR patients. Conversely, in high CR patients only, WMLs (but not MTA) highly contributed in increasing the risk for conversion to AD. In conclusion, CR interacts with both patients' cognitive features and WMLs in modulating the impact of AD pathology. This seems relevant for clinical prognosis and therapeutic strategies

    The impact of cognitive reserve on brain functional connectivity in Alzheimer's disease

    No full text
    One factor believed to impact brain resilience to the pathological damage of Alzheimer's disease (AD) is the so-called "cognitive reserve" (CR). A critical issue that still needs to be fully understood is the mechanism by which environmental enrichment interacts with brain plasticity to determine resilience to AD pathology. Previous work using PET suggests that increased brain connectivity might be at the origin of the compensatory mechanisms implicated in this process. This study aims to further clarify this issue using resting-state functional MRI. Resting-state functional MRI was collected for 11 patients with AD, 18 with mild cognitive impairment (MCI), and 16 healthy controls, and analyzed to isolate the default mode network (DMN). A quantitative score of CR was obtained by combining information about number of years of education and type of schools attended. Consistent with previous reports, education was found to modulate functional connectivity in the posterior cingulate cortex, whose disconnection with the temporal lobes is known to be critical for the conversion from MCI to AD. This effect was highly significant in AD patients, less so in patients with MCI, and absent in healthy subjects. These findings show the potential neural mechanisms underlying the individual's ability to cope with brain damage, although they should be treated with some caution based on small numbers
    corecore